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The increasing awareness of the essential role of RNA in controlling viral replication and in
bacterial protein synthesis emphasizes the potential of ribonucleoproteins as targets for
developing new antibacterial and antiviral drugs. RNA forms well defined three-dimensional
structures with clefts and binding pockets reminiscent of the active sites of proteins.
Furthermore, it precedes proteins in the translation pathway; inhibiting the function of a single
RNA molecule would result in inhibition of multiple proteins. Thus, small molecules that bind
RNA specifically would combine the advantages of antisense and RNAi strategies with the
much more favorable medicinal chemistry of small-molecule therapeutics. The discovery of
small-molecule inhibitors of RNA with attractive pharmacological potential would be facilitated
if we had available effective computational tools of structure-based drug design. Here, we
systematically test automated docking tools developed for proteins using existing three-
dimensional structures of RNA-small molecule complexes. The results show that the native
structures can generally be reproduced to within 2.5 Å more than 50-60% of the time. For
more than half of the test complexes, the native ligand ranked among the top 10% compounds
in a database-scoring test. Through this work, we provide parameters for the validated
application of automated docking tools to the discovery of new inhibitors of RNA function.

Introduction

The explosion in the number of structures of proteins
and their complexes and advances in computational
methods over the past decade have allowed great
progress to be made in the development of automatic
docking methods. Such programs now provide an es-
tablished set of tools to discover novel inhibitors for
protein drug targets.1-11 Combined with high-through-
put screening methods and with new ways to use NMR
and X-ray crystallography in the early phases of drug
discovery,12-17 these methods have resulted in the
discovery of new lead compounds.6,18-21 An important
aspect of the successful application of these programs
has been the validation of docking tools and the estab-
lishment of tested parameters for their application.22-24

In sharp contrast, rational drug design methods directed
at DNA and RNA have received much less attention.
In significant part, this has been due to the paucity of
3D structures of small molecule-nucleic acid complexes.
Until recently, we simply did not know enough about
RNA recognition to apply rational methods to the
discovery of new RNA-binding compounds. It is none-
theless likely that the application of computational
docking methods will provide very valuable approaches
to increase the likelihood of discovering druglike RNA-
binding compounds. Because existing computational
approaches and scoring functions have been developed
for proteins, we do not know how well they work in the
RNA environment. It is the goal of this work to evaluate
the performance of automated docking tools against
RNA.

RNA is an attractive target for infectious disease
because of unique resistance patterns and mechanism
of action of potential RNA-binding drugs. Because RNA
is located upstream from proteins in the gene-expression
pathway, blocking one RNA molecule would inhibit the
function of multiple proteins by affecting their synthe-
sis.25-28 RNA has long been a target of antimicrobial
therapy; many existing antibiotics bind to the ribo-
some. Among them are the aminoglycosides,26,29-37

pharmaceutically more important drugs such as the
macrolide erythromycin,38 and a recent new class of
antibiotics (oxazolidinones39,40). While the potential of
RNA as a drug target has been advocated for some
time,25,26,28,33,41-45 progress has not been easy. Existing
RNA-binding antibiotics do not provide attractive para-
digms. Most are natural products; they tend to be highly
positively charged, have multiple torsional bonds, and
are often relatively large compounds. They generally
violate “rules” that describe the features of successful
drugs established empirically through the analysis of
existing therapeutic compounds.46 They also tend to be
poorly specific; they target not only the bacterial ribo-
somal RNA but many other RNAs as well with compa-
rable activity in vitro. Clearly, there is a need to discover
new scaffolds and functional groups suitable for RNA
recognition. While the high-throughput screening of
proprietary and combinatorial libraries has provided
insight into RNA recognition and a number of chemi-
cally attractive RNA ligands,47-51 it is necessary to
explore chemical space more widely in search of com-
pounds suitable for binding to RNA.

RNA forms well-defined tertiary structures with deep
pockets and clefts lined by hydrogen-bonding groups
reminiscent of the active site of protein enzymes.26,28,44
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It should therefore be possible to apply rational drug
design methods to discover new small-molecule inhibi-
tors of RNA and RNA-protein complexes. Following a
very early study on perfect double helical RNA,52 an
important proving ground has been represented by the
HIV-1 TAR RNA.41,47,48,50 Other targets have been the
ribosomal A-site53 (the binding site for aminoglycosides
and other antibiotics) and a functional subdomain of 23S
rRNA involved in the GTPase activity of the ribosome.54

The considerable recent progress in understanding
RNA structure and folding, as well as recognition by
other ligands,26,33,35,55-59 makes it now possible to apply
structure-based design and docking methods to discover
new RNA-binding compounds. Our long-term objective
is to develop reliable methods to screen chemical
databases to find druglike molecules that bind to RNA
tightly and specifically and that retain attractive phar-
macological characteristics. Here, we investigate whether
automated docking methods successfully used in protein-
based drug design can be applied to RNA as well. For
this purpose, we have tested two docking tools (Auto-
Dock60 and Dock61) to establish whether such programs
would provide an effective platform for RNA-targeted
database screening.

Methods

Database Construction. We have tested the per-
formance of AutoDock and Dock on a data set of 16
selected ligand-RNA structures derived from the PDB
for which experimental binding constants are also
available (Table 1). Approximately half of them are
NMR structures of RNA aptamers; only two are crystal-
lographic structures. Ribosomal complexes were not
included in this test set because binding constants are
not available. We retained these structures as an
independent validation set (Table 2). The complexes
cover several logs in affinity (∆G varies from -4.09 to
-12.34 kcal/mol) and are diverse in structure. The
ligands range from small, very flexible aliphatic mol-
ecules with 12 heavy atoms to large flexible and cyclic
molecules (30-40 heavy atoms, 3-4 rings) and rigid
aromatic molecules with and without flexible side chains
(13-30 atoms, 2 and 3 rings).

Molecule Preparation. The program MOE (Chemi-
cal Computing Group Inc., Montreal; http://www.
chemcomp.com) was used to separate the ligand from
the RNA, to model missing residues, and to remove
water molecules and counterions. For the NMR struc-
tures we used the first one in the set unless a different

Table 1. Database of RNA-Ligand Complexes

PDB code compd technique Kd (µM) ∆G (kcal/mol) ref

Rigid and Aromatic
1AM0 AMP aptamer NMR 2.7 -7.59 108
1EHT theophylline aptamer NMR 0.4 -8.73 109
1F1T malachite green aptamer X-ray/2.8 Å 0.04 -10.09 110
1F27 biotin aptamer X-ray/1.3 Å 6 -7.12 111
1FMN FMN aptamer NMR 0.5 -8.59 112
1LVJ TAR-acetylpromazine NMR 0.1 -9.55 47

Weak Binders
1AJU HIV-2 TAR argininamide NMR 1000 -4.09 113
1KOC arginine aptamer NMR 60 -5.76 114
1KOD citrulline aptamer NMR 68 -5.68 114

Aminoglycosides
1BYJ gentamycin ribosome A-site NMR 0.01 -10.91 115
1EI2 neomycin splice regulator NMR 1 -8.18 58
1NEM neomycin aptamer NMR 0.1 -9.55 30
1PBR paromomycin ribosome A-site NMR 0.2 -9.14 116
1QD3 neomycin HIV 1 TAR NMR 1 -8.18 117
1TOB tobramycin aptamer NMR 0.0009 -12.34 118
2TOB tobramycin aptamer NMR 0.0012 -12.17 32

Table 2. Data Set of Antibiotic Structures

PDB code resoln (Å) ref

1FJG thermophilus 30S ribosomal subunit + streptomycin, spectinomycin, and paromomycin 3.0 119
1HNW thermophilus 30S ribosomal subunit + tetracycline 3.4 120
1HNX thermophilus 30S ribosomal subunit + pactamycin 3.4 120
1HNZ thermophilus 30S ribosomal subunit + hygromycin B 3.3 120
1J7T 16S-rRNA A-site + paromomycin 2.5 121
1JZX 50S ribosomal subunit + clindamycin 3.1 38
1JZY 50S ribosomal subunit + erythromycin 3.5 38
1JZZ 50S ribosomal subunit + roxithromycin 3.8 38
1K01 50S ribosomal subunit + chloramphenicol 3.5 38
1K8A 50S ribosomal subunit of Haloarcula marismortui + carbomycin 3.0 122
1K9M 50S ribosomal subunit of Haloarcula marismortui + tylosin 3.00 122
1KD1 50S ribosomal subunit of Haloarcula marismortui + spiramycin 3.0 122
1LC4 16S-rRNA A-site + tobramycin 2.54 123
1M90 50S ribosomal subunit + sparsomycin + CCA-phe-caproic acid 2.8 124
1MWL 16S-rRNA A-site + geneticin 2.4 125
1NJM 50S large ribosomal subunit + sparsomycin 3.6 126
1NJN 50S large ribosomal subunit + sparsomycin 3.7 126
1NJO 50S large ribosomal subunit + accupuromycin (ACCP) 3.7 126
1NWY Large ribosomal subunit + azithromycin 3.3 127
1OND 50S ribosomal subunit + troleandomycin 3.4 128
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structure was specified as the minimum energy struc-
ture in the PDB file. Hydrogen atoms where added to
the X-ray structures using standard geometrical pa-
rameters as implemented in MOE. Partial charges for
the RNA were added according to Kollman ’94.62 For
the ligands, we used PEOE (partial equalization of
orbital electronegativities) charges.63,64 It should be
noted that the AutoDock scoring function was calibrated
using these two same sets of charges for the receptor
and the ligands.60 We evaluated other charges for the
RNA (CFF91, Charmm and Gasteiger), but the afore-
mentioned combination gave the best results in cor-
relating ∆Gexp with ∆Gpred (data not shown) and was
therefore used throughout this study.

Electrostatics and Solvation. Force field scoring,
as used in Dock, tends to overestimate electrostatic
energy.65 To reduce the overall negative charge on the
backbone of the RNA (there are no counterions present
in any of the NMR structures), we increased the charge
on the phosphorus atom from 1.166 to 2.166 to simulate
the presence of a sodium counterion. The advantage of
this is that the charge on the phosphorus is reduced.
James and colleagues similarly scaled the negative
charge on the phosphate groups to 20-30%.66,67 Solva-
tion parameters for AutoDock were derived from similar
atom types in amino acids (in Supporting Information).
In addition, nitrogen atoms accepting and not accepting
hydrogen bonds were separately defined for the grid
map calculation. A 12-6 Lennard-Jones potential was
used for nitrogen-carrying groups that do not form
hydrogen bonds, while a 12-10 potential was used for
hydrogen-bond-forming nitrogens.

Dock. Version 4.0.1 of the Dock suite of programs is
still regarded as state of the art68,69 and was used in
this study. Connolly surfaces70,71 were constructed using
MS (no. 429 in QCPE, Indiana University). Dock uses
a parameter (dotlim in the INSPH file) to facilitate
sphere construction for wide active sites (such as the
DNA or RNA major grooves); it was set to -1. The
binding site was represented in each case through 20-
100 overlapping spheres constructed with sphgen.72 The
three-dimensional grid was then calculated with a
spacing of 0.3 Å, centered in the active sites and
extended by 10 Å in each direction. Energy scoring grids
were obtained by using the all-atom model and a
distance-dependent dielectric function with a 10 Å cutoff
and a dielectric factor of 4. A bump filter was used with
an overlap of 0.75. For rigid docking, we used automated
matching with a maximum of 5000 orientations; zero
bumps were allowed. For rigid database docking, we
used manual matching61 with a maximum of 5000
orientations, a distance tolerance of 0.5 Å, and a bump
filter with zero bumps allowed. For flexible docking of
single compounds, we used no anchor search, clash
overlap of 0.5 Å, and a conformation cutoff factor of 5.
For flexible database docking, we used anchor search
with torsion drive and 50 configurations per cycle, a
flexible bond maximum of 20, and a distance tolerance
of 0.5 Å.

AutoDock. AutoDock, version 3.05, was used in this
study. The grid for energy evaluation was set in the
center of gravity of the ligand with dimensions of 60
points × 60 points × 60 points and spacing of 0.375 Å.
Initial translation, quaternion, and torsion steps of 2.0

Å, 50.0°, and 50.0°, respectively, were chosen with a
reduction factor of 1 per cycle. Standard Lamarckian
genetic algorithm parameters were used. We used a
united atom representation for the ligand, which gave
a better correlation of predicted and experimental
binding energies when compared to the all-atom rep-
resentation (data not shown). The united atom repre-
sentation also speeds up the search. Each docking
simulation consisted of 100 independent docking runs.
For database docking, self-written shell scripts docked
each ligand consecutively into the active site and
extracted the ranking and scoring parameters from the
docking log file.

Docking Accuracy and Reliability. An effective
docking program must be reliable and accurate (mul-
tiple docking runs generate the target or a very similar
structure), must be able to rank compounds accurately,
and must identify putative ligands from random com-
pound sets to minimize the number of false positives.
It is also useful for the program to provide at least
qualitative estimates of the binding constant. To estab-
lish reliability parameters, 100 independent docking
runs were performed with both programs. We define
docking accuracy as how well the native pose of the
ligand is reproduced by the combination of algorithm
and scoring function in multiple independent runs. An
arbitrary value of a 2.5 Å rmsd from the experimental
structure was chosen to separate successful and unsuc-
cessful docking poses. Cutoff values between 1.0 and 3.0
Å root-mean-square deviation (rmsd) between docked
and X-ray pose have been used in past studies to define
successfully docked poses.2,65,73,74 While a value of 2 Å
is most often used,23,24,75,76 we increased the cutoff to
2.5 Å because most test complexes are NMR structures
and are therefore less precise and accurate. In testing
how well the experimental binding constant is repro-
duced by AutoDock, we used the epdb function to
evaluate the energy of the native structures in the active
site of the RNA. For each NMR-derived coordinate set,
10 independent structures were extracted from the
NMR ensemble to estimate how the coordinate error
affects the energy evaluations.

Database Docking. A primary characteristic of an
effective database-docking tool is the ability to rank
cognate ligands highly while at the same time ranking
nonbinding ligands unfavorably. This is crucial to
minimize the number of false positives. We conducted
two tests. In the cross-docking experiment, every ligand
of the test set was docked against each of the RNA
present in the test set. This test is highly demanding.
The native ligand should ideally to be ranked as the
highest compound among other RNA binding ligands.
In the second test, we spiked a database of 49 drugs
randomly chosen from the comprehensive medicinal
chemistry database, CMC (MDL, San Leandro) with
each RNA-binding ligand. This test represents a real-
istic if limited in size simulation of a real database
docking experiment. For Dock, all ligands were saved
in a single multi-mol2 file that was used as the ligand
input file. Since AutoDock does not provide a routine
for database docking, each ligand was docked separately
into the receptor and the results were then collected in
a single file.
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Results

In seeking to validate automated docking tools for use
with RNA, we selected two programs that use different
algorithms and two different approaches to evaluate the
interaction energy. Dock77-80 uses a shape-based match-
ing algorithm and a force-field based scoring function
derived from Amber.62,81,82 The interaction energy com-
prises van der Waals and electrostatic interactions but
lacks explicit hydrogen bonding, solvation, and hydro-
phobicity, as well as entropic terms describing solvation
and freezing of rotational degrees of freedom. This
approach is inherently unable to provide absolute
estimates of binding constant and can only rank com-
pounds. AutoDock83 uses a genetic algorithm for global
search (Lamarckian genetic algorithm) and a local
search algorithm.84 The program uses a semiempirical
energy function calibrated on 30 protein-ligand com-
plexes.85 It comprises van der Waals, hydrogen bond,
electrostatics, torsional terms, and a solvation term
based on a sigmoidal distance-dependent dielectric
function.86,87 Unfortunately, other programs that use
different algorithms are at present unsuitable for work-
ing with nucleic acids. FlexX, for example, lacks atom
types definition for nucleotides.88-90

The binding free energy of RNA-ligand com-
plexes can be qualitatively reproduced by a
semiempirical scoring function. We first evaluated
how well the inhibition constants of RNA-ligand com-
plexes can be predicted qualitatively through the semi-
empirical approach implemented in AutoDock. Although
the database of 16 complexes available at the present
time is small and the available KD range not vast, the
small molecules are diverse in structure. We expected
that the experimental results would be reproduced only
after recalibration of the weight of different components
of the scoring function. However, when measured and
predicted binding constants are compared, we obtain a
best-fit line (excluding the two outliers) with a slope very
close to ideal (1) and intercept close to the origin (Figure
1). Because many of the structures in the database are
NMR-derived, multiple copies of the same coordinate
set are generally available. By calculating the predicted
free energy of binding for the same complex using
different coordinate sets, we were able to evaluate how
the uncertainty on the coordinates affects the free
energy prediction. When considering the experimental
uncertainty both in the measured (error bars in Figure
1a, left) and predicted (dots in Figure 1b, right) binding
energies, and the very limited data set of structures
(only 16), we concluded that recalibration of the scoring
function would be unwarranted. The data of Figure 1
suggest that the AutoDock scoring function appears to
reproduce existing binding constants for the RNA-small
molecule constant semiquantitatively. A larger data set
of structures will be required to improve the model and
provide a more accurate description of the binding
energy of RNA-small molecule complexes.

The outlier structures (1NEM and 1F1T, encircled in
Figure 1) provide interesting insight into the limitations
of the scoring function. Nitrogen atoms on the RNA
bases are treated by AutoDock as hydrogen bond ac-
ceptors and are represented by a spherical potential
around the atom center,91 leading to a region of un-
realistically favorable interaction energy both above and

below the plane of the base (Figure 2). Thus, the lack
of directionality for hydrogen bond acceptors appears
to be a limitation of the simple model used to derive
energy estimates.

Given the highly charged nature of RNA molecules,
we also examined whether different charge sets would
improve the predictive value of the semiempirical
potential. Different combinations of partial charges for
the receptor and the ligands were independently evalu-
ated. We found that the combination of Kollman9462

charges for the receptor and PEOE63,64 charges for the
ligand gave the best results based on the correlation of
predicted and experimental free energy of binding (data
not shown). This result is probably attributable to the
fact that AutoDock was calibrated using this exact
combination of partial charges.60

Reliability of the Docking Algorithms and Scor-
ing Functions. A strongly performing docking program
should be able to reproduce the target structure reliably
and accurately. To examine this feature, we evaluated
how many independent poses cluster to within a preset
deviation from the experimentally determined target

Figure 1. Predicted vs experimental free energy of binding
for the 16 training complexes as calculated by AutoDock. (a)
Predicted vs experimental binding energies. The error bars
represent either reported uncertainties on measured Kd (when-
ever available) or a 20% uncertainty (whenever experimental
error estimates were not reported). A line of best fit (shown
in red, excluding the circled outliers) has a standard deviation
of 2.12 kcal/mol. (b) Uncertainties in the experimental coor-
dinates affect the prediction of the free energy of binding. For
each complex, the binding free energy was calculated inde-
pendently and plotted for the 10 best structures enclosed in
the NMR-derived coordinate set.
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structures. An example of the performance of AutoDock
on different sets of ligands is provided in Figure 3, which
shows superposition of multiple independently gener-
ated docking poses for three complexes. Quantitative
estimates are shown in Figure 4, where we report the
“successful docking rate”: the number of structures in
100 independent docking runs that cluster within 2.5
Å of the target structure.

Dock reproduces the native structure to within 2.5 Å
for complexes of rigid aromatic ligands but performs
poorly with weak-binding ligands (1AJU, 1KOC, 1KOD)
and with aminoglycosides (Figure 4a). The three weak-
binding complexes (argininamide-TAR 1AJU, arginine
aptamer 1KOC, and citrulline-aptamer 1KOD) are also
very flexible ligands. The poor performance of the
algorithm is understandable given the relatively weak
binding constant and flexible nature of the ligands.
Concerning 1AJU, it has also been shown that multiple
binding sites on TAR exist.51 For aminoglycosides, only
in some cases (paromomycin 1PBR and tobramycin I
aptamer 1TOB) can the target structure be reproduced
successfully. Complexes where hydrophobic interactions
predominate (for example, complexes where intercala-
tion is observed such as 1AM0, 1EHT, 1F1T, 1FMN)
were instead docked successfully more than 50% of the
time. Dock has been reported to perform better with
hydrophobic binding sites and to be less effective with
hydrophilic target structures.22 In a test conducted with
herpes simple virus thymidine kinase, a receptor with
a wide binding site and high accessibility to water (not
unlike RNA), Dock was unable to find the correct pose
for 3 out of 10 known ligands. It was also able to identify
only 1 out of 10 known ligands from a database of 990
molecules (among the top 5% scorers).22 An additional
limitation is of a technical nature. Dock generates an
image of the active site through a set of spheres; the
quality of the constructed spheres is critical to its
success. The major groove of RNA is much more open
and wide than a “classical” active site pocket, making
sphere construction less rigorous.

AutoDock reproduces the conformation observed in
the target complex (Figure 4b) much more often than
Dock. More than 50% of the docked structures lie within
the cutoff value for most ligands, the exceptions being
again two of the weak binders (1AJU, 1KOD) and some
aminoglycosides (1EI2, 1QD3, 1PBR), the same struc-
tures that performed worse with Dock.

A complementary way to evaluate the reliability of
docking programs is to plot the results of each inde-
pendent docking run after they have been ordered for
increasing deviation from the target (Figure 5). Ideally,
the line should be knee-shaped, with a majority of
docked structures falling below the rmsd cutoff value.
This pattern is seen for AutoDock in a majority of cases
(the most successful being 1EHT, 1F1T, 1TOB, 2TOB,
1BYJ, 1F27, 1AM0, 1KOC, 1NEM, and 1FMN). For

Figure 2. Close-up of 1NEM highlighting out-of-plane elec-
trostatic interactions between neomycin amines and adenosine
base nitrogens. Contacts with base nitrogen atoms above and
below the base plane are identified with cyan lines. The RNA
backbone is represented by the tube, and residue A13 of the
RNA and the ligand are rendered in ball-and-stick representa-
tion. Ligand hydrogen atoms have been omitted for clarity.
The figure was produced with MolScript129 and rendered with
Raster3D.130-132

Figure 3. Superposition of representative structures from
multiple independent docking runs (AutoDock): (a) 1EHT; (b)
1AM0; (c) 1AJU. Native ligands are in atom color. For 1AM0
and 1EHT, all docking runs cluster within 2.5 Å of the target
structure. For argininamide (1AJU, a major groove binder with
low affinity), the ligand is found to cover a wide section of the
binding pocket. Clustering of the ligand in preferred locations
is nonetheless observed even in this least successful example.

4192 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 17 Detering and Varani



Dock, only a few test structures (1EHT, 1F1T, 1F27,
and 1FMN) yield rmsd-ordered curves comparable to
those observed with AutoDock.

Docking and Ranking Accuracy. We next evalu-
ated whether structures that cluster the closest to the
target are also ranked most favorably. In a strongly
performing docking program, poses that reproduce the
experimental structure the best would also correspond
to the best scoring docking runs. Ideally, one would like
to observe a plot in which the structures closest to the
target cluster closely in space and are ranked among
the best scoring poses, thus generating a sector-shaped
plot.

When the rank of each independent pose is plotted
versus the rmsd from the native structure (Figure 1 in
Supporting Information), Dock generally provides a poor
correlation between ranking and docking except for
1F27, 1FMN, and 1F1T (where most poses cluster at
low rmsd from the target). In contrast, the rigid
aromatic compounds (1AM0, 1EHT, 1F1T, 1F27) and
1TOB can be docked by AutoDock to within a very
narrow rmsd range near the target. Satisfactory behav-
ior is observed for 1FMN and 1NEM and, less clearly,
for 1PBR, 1QD3, 2TOB, and 1BYJ. The sector shape of
the plot shows the clustering of low-rmsd docking runs
among the higher-ranking compounds, while high-rmsd

compounds generally tend to rank worse. No correlation
between ranking and scoring is observed instead for the
weak binding compounds 1AJU and 1KOD, for 1LVJ
(a rigid compound), and for 1EI2 (an aminoglycoside).
For 1EI2, for example, the pose closest to the target (1.1
Å rmsd) ranks 16/100, while the best scoring structure
is 4.73 Å away from the target. For 1KOD the closest-
docked structure (1.78 Å rmsd from the native) ranks
44, while the best scoring structure is 10.28 Å away from
the target.

A rigorous way to identify test structures with strong
correlation between ranking and rmsd is provided by
Spearman’s rank correlation coefficient.92 Most test sets
are positively correlated (as desired) (Table 3), but
generally the correlation is weak, indicating the in-
ability of the programs to favorably rank structures that
cluster close to the target for these complexes.

Database Docking and Cross-Docking Tests. The
first and most stringent test of the performance of the
docking algorithms in a database search was the cross-
docking experiment (Figure 6a). In this test, each of the
16 ligands competes with the other 15 to rank first for
its cognate receptor. This test is very demanding
because the programs have to sort the native ligand
from a set of RNA binding molecules that generally
share common RNA-binding characteristics (such as
favorable electrostatics). Furthermore, the aminoglyco-

Figure 4. Reproducibility of the target structures in multiple
independent docking runs. For each test structure, the ligand
was independently docked 100 times into the active site and
the resulting poses were compared to the experimentally
determined native structure. Structures that cluster within
2.5 Å rmsd of the test structure were regarded as successfully
docked. (a) Dock: blue bars show the result for rigid body
docking, while green represents flexible ligand docking. (b)
AutoDock.

Figure 5. The rmsd from the target structure for independent
docking runs. The figure reports the rmsd-ordered deviation
from the target of successively docked structures for Dock (a)
and AutoDock (b). For most test structures, many more poses
cluster near the target structure when AutoDock is used. Each
“docking run” represents an independent docking experiment.
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sides are known to bind multiple RNA targets equally
well and with activity significantly stronger than re-
ported for the weak binding compounds in the data set.
They should be expected to score favorably even against
noncognate targets and to outrank weak-binding com-
pounds such as arginineamide.

AutoDock positions the correct ligand near the top
(rank 1 or 2) in 7 out of 16 cases. As expected, the
algorithm has difficulties finding the correct ligand for
the weak binders 1AJU, 1KOC, and 1KOD, but it
performs surprisingly well for most aminoglycosides.
Except for 1EI2 and 1QD3 (both neomycin complexes),
all aminoglycoside complexes are correctly ranked as
the top or second-best ligand. Dock found the cognate
ligand in the top 2 positions in 4 out of 16 cases using
flexible docking (bonds are allowed to rotate according
to a rotamer library) and 9 out of 16 times using rigid
docking (the conformation of the ligand is maintained
and only its orientation is probed on the surface of the
receptor). Because the orientation is predetermined and
correct, it is easier for the ligand to find its cognate site;
thus, executing this test in the “rigid” mode over-
represents the success rate of the algorithm. None of
the aminoglycosides were positioned satisfactorily in
flexible docking, while three (1EI2, 1TOB, and 1PBR)
were positioned correctly using rigid docking (data not
shown). As in other tests, Dock produced better results
for ligands with hydrophobic ring systems.

In the database-docking test (Figure 6b), we simu-
lated the process of screening a database. A small test
group of 49 drugs taken from the CMC (Comprehensive
Medicinal Chemicals, MDL; San Leandro, CA) was
spiked with each of the 16 native ligands one at a time.
The algorithms were asked to dock the native ligand
and each of the 49 noncognate molecules and to compare
the respective ranks. An arbitrary 10% cutoff value
(rank 1-5) was used to provide intuitive guidance. In
the flexible docking test, 10 out of 16 native ligands are
identified among the five best ranking compounds by
both Dock and AutoDock. AutoDock ranked the entire
set of the aminoglycosides among the best-ranking

ligands, but the weak binders were problematic (as
expected) and so were several rigid aromatic compounds
(surprisingly). Neomycin (1QD3) is well ranked by
AutoDock but not by Dock. This is likely to be due to a
partially closed binding site with one base partly enclos-
ing the ligand, requiring a more sophisticated search
method (as implemented in AutoDock) to position the
ligand correctly.

Consensus Scoring. Consensus scoring (i.e., com-
bining different scoring functions to rank compounds)
can drastically enhance the outcome of database screen-
ing by reducing the number of false positives.22,75,93,94

Consensus scoring can be executed through “rank-by-
rank” (the score is the average rank of each compound
calculated from each participating scoring function),
“rank-by-number” (each scoring function contributes to
the score with its individual predicted value, and the
consensus score is simply the resulting average), and
“rank-by-vote” (if a compound is ranked among the top
X% of the database, it gets a vote from that scoring
function; the final score is the number of votes from all
participating scoring functions). Rank-by-number is not
appropriate given the completely different nature of the

Table 3. Spearman’s Rank Correlation Coefficient Calculated
for the Results from 100 Docking Experiments for Each
Complex in the Test Set (See Also Figure 1 in Supporting
Information)

rank/rmsd correlation coefficient for

complex Dock AutoDock

Rigid and Aromatic
1AM0 0.039 53 0.371 28
1EHT 0.356 82 -0.199 32
1F1T 0.196 62 0.258 22
1F27 -0.222 82 -0.256 91
1FMN 0.267 10 0.522 31
1LVJ 0.112 97 0.512 99

Weak Binders
1AJU -0.140 32 -0.205 67
1KOC 0.095 48 0.178 35
1KOD 0.608 99 -0.519 27

Aminoglycosides
1BYJ 0.069 55 0.740 39
1EI2 -0.090 92 -0.124 55
1NEM 0.050 80 0.935 05
1PBR 0.408 17 0.671 41
1QD3 -0.117 40 0.456 42
1TOB -0.032 96 -0.105 49
2TOB 0.063 09 0.729 89

Figure 6. Cross-docking and database docking tests. (a) A
small database containing all the ligands in the test set was
constructed and screened against each of the target structures
contained in the RNA-ligand database of Table 1. (b) In the
database docking test, the programs are asked to recognize
the native ligand in a test database of 49 non-RNA binding
compounds. In both tests, AutoDock (red) performs better with
aminoglycosides while Dock (green) is most effective with rigid
aromatic compounds. The vertical lines represent the top 10%
cutoff line.
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two scoring functions (force field versus empirical) while
rank-by-vote is regarded as less reliable and is not
recommended.94 Therefore, we used “rank-by-rank”.

We wished to estimate which combination of scoring
functions and docking algorithms is likely to provide the
smallest number of false positives. If we were to pick
compounds at random without any knowledge of their
suitability for the target, there would be no “enrich-
ment” of cognate ligands among the top ranking com-
pounds (Figure 7, column 1). The combination of scoring
and docking that provides the highest enrichment rate
(the largest number of compounds known to bind among
the top ranking compounds, i.e., the smallest number
of false positives) would maximize the effectiveness of
the protocol by placing the largest number of cognate
ligands among those to be physically screened (the top
ranking compounds, Figure 7). Because we do not have
even a single example of several known inhibitors
targeting the same receptor, it was not possible to
generate a meaningful test through this approach.
Instead, we generated a larger number of results by
combining the results of the 16 database docking
experiments against all 16 target RNAs (16 independent
libraries), each containing the 49 known drugs and 1 of
the ligands from our test case. For example, gentamycin
was included in the “gentamycin” library with the 49
known drugs and this library was then docked against
the RNA from the gentamycin-RNA complex. This
procedure was repeated for each of the 16 complexes,
and the results were evaluated together.

When compounds are picked at random, there is
obviously no enrichment (Figure 7, column 1, random
score). Some enrichment of native ligands among the
top scoring compounds (a line is arbitrarily drawn for
the top five scores to guide the eye) can be observed in
the Dock contact score (second column from the left)

compared with the random result, but the spread is still
reminiscent of a random distribution and the improve-
ment is not significant. Contact scoring favors nonpolar
interactions,95 while RNA and most of our ligands are
obviously charged. Energy scoring results in much
better enrichment (column 3, Dock energy score); com-
pounds known to bind the target are generally found
within the best 20-30% scoring compounds in the
database with the exception of 1LVJ, 1QD3, 2TOB (the
last two are aminoglycosides). A similar pattern emerges
when compounds are ranked on the basis of the Auto-
Dock score (column 4), but the results are not as
encouraging as with Dock. Combining the Dock energy
score (column 3) with AutoDock (column 4) does not
significantly improve the enrichment rate (column 5,
consensus score AutoDock/Dock) in comparison to Dock
alone. The highest level of enrichment is observed
instead when compounds are docked first using Dock
and then redocked by using AutoDock (column 6,
redocking Dock with AutoDock). In this approach, we
redocked the top five scoring compounds using the
AutoDock scoring function and algorithm. If the native
ligand was not in the top five, we redocked all com-
pounds that ranked better than the native ligand. For
two cases (1EHT and 1EI2) only, the ligand’s rank did
not improve, and in two other cases it remained the
same (1AJU and 1AM0). In all other cases, the ranking
of the native ligand was improved.

Docking of Ribosome-Binding Antibiotics. The
antibiotic structures (Table 2) were docked using Auto-
Dock to evaluate whether docking could be executed on
this well-validated drug target as well. Because this
data set comprises X-ray structures of different resolu-
tion (2.4-3.8 Å), this test also provides us an op-
portunity to evaluate the effect of the quality of the
structure on docking. In docking ribosome-binding
compounds, the binding site was defined to encompass
a radius of 30 Å around the ligand binding site, and each
ligand was docked 100 times to evaluate how well
docking poses could be reproduced and ranked. The
results for two successful examples (accupuromycin and
geneticin) are shown in Figure 8, where the top-ranking
poses are superimposed on the X-ray structure (rmsd
values are 1.92 and 1.13 Å, respectively). When the
ribosome-ligand complexes were repeatedly docked to
evaluate how reliably the program could identify the
correct docking pose, however, the results were less
satisfactory compared to the 16 compounds in the
original data set (Figure 9). Only two compounds
(geneticin (1MWL) and tobramycin (1LC4)) docked near
the correct pose more than 50% of the time. For six
compounds (paromomycin 1J7T, hygromycin B 1HNZ,
accupuromucin 1NJO, spiramycin 1KD1, carbomycin
1K8A, and paromomycin 1FJG), the success rate was
30-40%. For all remaining compounds (streptomycin
and spectinomycin 1FJG, tetracycline 1HNW, pacta-
mycin 1HNX, clyndamycin 1JZX, erythromycin 1JZY,
chloramphenicol 1K01, tylosin 1K9M, azithromycin
1NWY, and sparsomycin 1M90) a pose close to the
target structure was found less than 30% of the time.
For sparsomycin (1NJN, 1NJM) and troleandromycin
(1OND), we could not find a single docking solution
within 2.5 Å of the target. In the three cases where the
ligand was most reliably docked into its native binding

Figure 7. Consensus scoring for database docking. The figure
shows the rank (the position out of 50 compounds after scoring)
of each native ligand from our test set in the test database as
generated at random (leftmost column, random score) and by
individual scoring functions: (contact) Dock contact score;
(energy score) Dock energy score; (AutoDock score) AutoDock
semiempirical free energy score. The result of combining
AutoDock and Dock energy scoring in a consensus score based
on the rank-by-rank approach is shown in column five (con-
sensus score AutoDock/Dock). The rightmost column shows the
result of using AutoDock to rescore compounds that were
prescreened with Dock (redocking Dock with AutoDock).
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site, the ligands were aminoglycosides (geneticin 1MWL,
tobramycin 1LC4, and spyramycin 1KD1). Surprisingly,
the six ligands that exhibit stacking interactions be-
tween the ligand and the ribosome (e.g., sparsomycin

1M90) had low success rates of 9, 10, 11, 0, 0, and 36%
(1HNW, 1K01, 1M90, 1NJM, 1NJN, and 1NJO, respec-
tively).

We attempted to correlate these results with proper-
ties of the ligand or of the binding site, but the only
significant correlation was with the crystallographic
resolution. Structures of higher quality were docked
more reliably (on average) than lower resolution struc-
tures (data not shown). It is to be remarked that in the
ribosome test set, molecules are generally larger and
more flexible than in the test database of Figure 1. For
example, tylosin (1K9M) with 64 heavy atoms could only
be ranked accurately about 14% of the time (Figure 9).
Troleandomycin (1OND) has 57 heavy atoms and could
never be docked successfully in our test (below 2.5 Å
rmsd). In contrast, accupuromycin (1NJO), a molecule
with 37 heavy atoms, was docked 36 times out of 100
times within 2.5 Å of the target structure. We be-
lieve that the difficulty of docking algorithms to find
correct solutions for large molecules with many flexible
bonds may be responsible for the less satisfactory
performance of the programs with the ribosome set of
structures.

Discussion

Before database-screening experiments can be ex-
ecuted on RNA targets of pharmaceutical interest, it is
important to establish how reliable and accurate dock-
ing tools are when used with RNA. James and co-
workers have recently described the very successful
discovery of a new class of ligands directed against
HIV-1 TAR RNA from database screening.47,48,50 How-
ever, no attempt has so far been made, as far as we are
aware, to analyze whether docking tools developed for
database docking against protein receptors provide
effective ligand docking and screening approaches for
RNA as well. We chose two algorithms and scoring
functions (Dock and AutoDock) that are widely available
in the academic community and that provide a diverse
approach to docking and scoring. While AutoDock uses
a semiempirical scoring function and genetic program-
ming,60 Dock uses a simpler ranking score derived from
the Amber force field and a shape-matching docking
algorithm.61 Dock handles large databases rapidly and
handily, while AutoDock is designed for use with one
ligand at a time. Additional functionalities (specifically
solvation and simulation of electrostatics using the
generalized Born approach or the Poisson-Boltzmann
equation) have recently been implemented in Dock 5.
However, the â version of Dock 5 was released while
these studies were already well underway and these
improvements were not evaluated here. The results
presented here concern two different, easily available
docking programs that could be readily adapted to work
with nucleic acids. Other attractive software packages
(e.g., FlexX88-90) and scoring functions (e.g., Chem-
score97 and Drugscore98,99) lack at the moment the
capability handling nucleic acids.

We were surprised to observe that the empirical
scoring function implemented within AutoDock ap-
proximates at least in a qualitative sense the energy of
binding of RNA-ligand complexes even if the training
set used to optimize the parameters of the scoring
function is composed of protein-drug complexes60,85,96

Figure 8. Ribosome docking test: (a) accupuromycin docked
against the 50S ribosomal subunit D site (1NJ0), where the
residue A2581 was omitted for clarity; (b) geneticin docked
against the eubacterial ribosomal RNA A-site (1MWL). Native
ligands are given in atom color. The figures were produced
with MolScript129 and rendered with Raster3D.130-132

Figure 9. Reproducibility of automated docking poses for the
ribosome complexes. For each structure (see Table 2), the
ligand was independently docked 100 times into the active site
and the resulting poses were compared to the experimentally
determined structures. Poses that cluster within 2.5 Å of the
target structure were considered successfully docked (see also
Figure 4).

4196 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 17 Detering and Varani



(Figure 1). We expected to have to reparametrize the
scoring function. When the uncertainties on the binding
constant, the small size of the training set, and espe-
cially the limited precision of the coordinate set (most
complexes are NMR structures, Figure 1b) are consid-
ered, it is questionable whether the existing data
warrant an improvement of the free energy model.

We considered testing other scoring functions devel-
oped over the past several years, for example, Chem-
Score,97 DrugScore,98,99 or XScore.24,100 However, none
could be applied to RNA as currently implemented.
Furthermore, all represent other examples of semi-
empirical scoring functions (as used in AutoDock)
trained on different sets of protein-ligand complexes.
It is very likely that a genuinely superior semiempirical
model could be generated by training a semiempirical
scoring function on an RNA-only data set and by
introducing new terms to describe stacking and cat-
ion-π interactions (which are known to be especially
important in RNA- and DNA-ligand recognition).101-103

This remains an important goal for future studies, but
more experimental information will have to become
available before it can be conducted effectively. It would
also be highly valuable to test the performance of
scoring functions that are neither force field derived
(like Dock) nor semiempirical, for example, knowledge-
based potentials. If this were to be done, scoring
functions of genuinely different physical origin would
become available, allowing consensus scoring to be
conducted more effectively than currently possible.

An effective database-docking tool should identify the
most favorable binding pose reliably and rank this mode
of interaction highly. We addressed these features of
Dock and AutoDock by repeatedly docking each of the
complexes in the training set, thereby generating mul-
tiple (100) independent poses. AutoDock identifies the
target structure to within 2.5 Å for all ligands except
very weak binders (1AJU and 1KOD) and some amino-
glycosides (1QD3, 1PBR, and 1EI2) (Figures 4b and 5b).
In our tests, Dock was found to work best with nonpolar
and small compounds perhaps because its force field
based scoring function underemphasizes solvent effects
and hydrogen-bonding interactions. These are more
extensively treated in AutoDock, perhaps explaining the
improved docking with aminoglycoside drugs, since
these molecules form many NH and OH hydrogen bonds
with nucleic acids. The performance with rigid aromatic
compounds (which are most attractive for genuine drug
discovery efforts) is particularly encouraging. Dock is
also capable of docking these rigid compounds ac-
curately and reliably into their cognate binding sites,
but the performance with weak binders and amino-
glycosides is very poor (Figures 4a and 5a). While these
results may superficially indicate a substantial limita-
tion of both sets of docking tools, a more careful con-
sideration of the results is reassuring. It is not surpris-
ing that weak binding ligands are docked poorly, and
the same is true for aminoglycosides; they are large,
highly charged, and flexible molecules. Although amino-
glycosides have provided a source of chemical in-
spiration for many studies aimed at discovering new
RNA-binding ligands, these molecules are quite unlike
most successful drugs and do not exhibit druglike
properties.46,104-106

The results for docking accuracy obtained in this
study are comparable to those obtained with proteins.
For example, in a study of 200 protein-small molecule
complexes, Dock succeeded in 105/200 cases in docking
the ligand within 2.0 Å of the target structure.107 In
another test aimed at evaluating the effect of ligand
flexibility on docking accuracy, 6/12 ligands were docked
within 2.0 Å of the experimental structure.61 AutoDock
was compared with 10 other scoring functions with
respect to docking accuracy. By use of the same cutoff
rate used in the present study (2.5 Å), AutoDock had a
success rate of 62%.24 The docking accuracies obtained
with RNA in the present study are comparable to those
obtained with proteins. This result is the more pleasing
when it is considered that algorithms and, especially,
scoring functions were trained on proteins.

The ribosomal test set included higher-quality X-ray
structures compared to the mostly NMR structures
contained in the data set of Table 1, and we expected
increased success. However, docking of ribosomal ligands
was generally less successful compared to the test
database results (Figure 9). Although there was a weak
correlation between the quality of the X-ray structure
and the success of the docking test, the generally larger
and more flexible character of the ribosome-binding
antibiotics probably led to the inferior performance. It
is more difficult for the algorithm to find a correct
solution for a larger molecule with many flexible bonds.
In a genuine database screening experiment, molecules
of the size and chemical complexity of the natural
products that bind the ribosome will not be likely to be
highly represented nor would they generally provide
attractive leads for further studies.

The results of Figures 4 and 5 indicate that both Dock
and AutoDock can identify the target structure in the
large majority of cases to within 2.5 Å for the type of
druglike rigid molecules that are of most interest in
drug discovery. In a real database screening experiment,
however, the target structure is unknown. Success in a
realistic database screen relies on the ability of the
program to rank poses that correspond to more favor-
able orientations of the ligand in the receptor as having
better interaction energy than incorrect poses. Our
results indicate that many compounds in the test
database show a good correlation between scoring rank
and accuracy of the pose when compounds are docked
with AutoDock. A sector-shape plot is generated when
scoring rank is correlated with deviation from the target
structure for the “rigid aromatic” class of ligands and
even for several aminoglycosides (1NEM, 1TOB, 1PBR,
and 2TOB). In other words, favorably scoring poses tend
to cluster nearer the target structure than higher-
ranking poses. The performance of Dock is much less
satisfactory; for a few cases only (1F1T, 1F27, and
1FMN), there is a good correlation between ranking and
docking accuracy (see Supporting Information).

The tests of greatest importance for database docking
are reported in Figure 6. First, we established how well
the program can discriminate between several related
ligands by asking the algorithm to identify the cognate
compound in a test database containing all other RNA-
binding ligands present in the data set. This test is very
demanding, since most compounds in the data set tend
to be basic molecules with some affinity for all RNA
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molecules. Furthermore, aminoglycosides are known to
bind a variety of RNA molecules with approximately
micromolar affinity and there is every reason to expect
that at least some of them (if not all) will bind some of
the RNAs as well as their cognate ligand, particularly
in the case of the weaker ligands 1AJU, 1KOC, and
1KOD. It is also well-known that larger compounds tend
to be docked more favorably by many database docking
programs.22 To our surprise (Figure 6a), Dock was more
successful in identifying the cognate ligand among the
top scoring compounds for the “rigid aromatic” class of
ligands. Perhaps AutoDock overemphasizes electrostatic
interactions, thereby allowing the basic aminoglycosides
to outscore the cognate ligand. Alternatively or in
addition, the genetic algorithm may allow aminoglyco-
sides to find favorable docking poses, while the simpler
approach used by Dock may not.

Figure 6b reports the simulation of a database dock-
ing experiment. We generated a test library by spiking
a common set of 49 compounds with each of the 16 RNA-
binding ligands and ranked the 50 compounds after
docking them against the 16 target structures. Com-
plexes were sorted as rigid aromatic compounds, weak
binders, and aminoglycosides for ease of comparison.
The almost opposite pattern of success for the two
programs is noteworthy; AutoDock performs best with
aminoglycosides, and Dock performs best with “rigid
planar” compounds. As in other tests, Dock produced
better results for ligands with hydrophobic ring systems.
Its shape-based algorithm works better with hydropho-
bic pockets, while shallow and wide binding sites are
problematic, as are large flexible molecules.

The final set of tests was aimed to assess which
combination of docking and scoring would provide the
highest level of enrichment, in other words, the highest
likelihood of ranking the known RNA-binding com-
pounds near the top of the database (Figure 7). This test
essentially measures how useful in silico screening is
in prefiltering large databases to identify potential
ligands for the receptor of choice. The Dock energy score
(column 2) locates a majority of ligands within the top
10% of the database and performs considerably better
than AutoDock (column 4). The combination of the Dock
and AutoDock score does not significantly improve the
enrichment level (column 5). However, using AutoDock
to redock and rerank the compounds identified by Dock
as the top ligands (top 10%) leads to the highest level
of enrichment (column 6).

The results reported in Figure 7 indicate that the
highest likelihood of identifying RNA-binding ligands
from database screens are obtained by using Dock to
prefilter the initial library and then by redocking the
top ranking compounds using AutoDock. This approach
provides the highest likelihood of enriching RNA-
binding molecules at or near the top of the ranking list.
An analogous approach was demonstrated to work
successfully in a genuine database screening experiment
conducted with HIV-1 TAR RNA.47,48,50 The effectiveness
of the Dock algorithm in handling large database and
of the docking/scoring of rigid druglike molecules will
likely identify a reduced library enriched with druglike
RNA-binding molecules. These preselected molecules
will then be rescreened using AutoDock to reduce false
negatives by ranking molecules through an independ-

ent, empirical scoring function (Figure 1). This approach
has several additional advantages. First is the speed of
Dock. Second, the two algorithms and scoring functions
appear to perform best on different classes of com-
pounds. Furthermore, they take advantage of the su-
perior ability of AutoDock in finding poses close to the
target structure (Figure 4) and in correlating high-
scoring poses with orientations with low rmsd from the
target (see Figure 1, Supporting Information).

In summary, we have examined the validity of
protocols to automatically dock large databases against
RNA drug targets that optimally enriches the database
for potential ligands. The results show that it is possible
to use automated docking tools developed for proteins
to increase the likelihood of discovering molecules that
bind to RNA in chemical databases. The protocol we
have tested uses docking tools that are widely available
and take advantage of the different characteristics of
the two algorithms to optimally use their respective
strengths. While large and flexible molecules are clearly
problematic, the protocol works best with rigid planar
molecules that are of the greatest interest in realistic
drug discovery efforts.
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